Study the given Venn-diagram, and find the elements and cardinality of tabulated sets.
Based on Venn-diagram with labeled cardinality, find cardinality of tabulated sets.
Based on the Venn-Diagram given below, compute the cardinality of sets as mentioned below.
SN | Set Notation | ||||
1 | \(A_0\) | ||||
2 | \(B_0\) | ||||
3 | \(C_0\) | ||||
4 | \((A \cap B)_0\) |
\((A \cap B)_0=\{1,2\}\) \(n_o(A \cap B)=2\) |
\((A \cap B)_0=\{1\}\) \(n_o(A \cap B)=1\) |
\((A \cap B)_0=\{b\}\) \(n_o(A \cap B)=2\) |
\((A \cap B)_0=\{a,b,c\}\) \(n_o(A \cap B)=3\) |
5 | \((B \cap C)_0\) | ||||
6 | \((A \cap C)_0\) | ||||
7 | \((A \cap B \cap C)\) | ||||
8 | \(A\) | ||||
9 | \(B\) | ||||
10 | \(C\) | ||||
11 | \((A \cap B)\) | ||||
12 | \((B \cap C)\) | ||||
13 | \((A \cap C)\) | ||||
14 | \(A \cup B\) | ||||
15 | \(B \cup C\) | ||||
16 | \(A \cup C\) | ||||
17 | \(A \cup B \cup C\) | ||||
18 | कम्तिमा एक समुहमा पर्ने सदस्य | ||||
19 | कम्तिमा दुई समुहमा पर्ने सदस्य | ||||
20 | कम्तिमा तिन समुहमा पर्ने सदस्य | ||||
21 | बढिमा एक समुहमा पर्ने सदस्य | ||||
22 | बढिमाा दुई समुहमा पर्ने सदस्य | ||||
23 | बढिमा तिन समुहमा पर्ने सदस्य | ||||
24 | ठिक एक समुहमा पर्ने सदस्य | ||||
25 | ठिक दुई समुहमा पर्ने सदस्य | ||||
26 | ठिक तिन समुहमा पर्ने सदस्य | ||||
27 | \( (A \cup B)-C\) | ||||
28 | \( (B \cup C)-A\) | ||||
29 | \( (A \cup C)-B\) | ||||
30 | \( \overline{(A \cup B \cup C)}\) |
Based on Venn-diagram with labeled cardinality, find cardinality of tabulated sets.
SN | Set Notation | ||||
1 | \(n(A_0)\) | ||||
2 | \(n(B_0)\) | ||||
3 | \(n(C_0)\) | ||||
4 | \(n_o(A \cap B)\) | \(n_o(A \cap B)=d\) | \(n_o(A \cap B)=q\) | \(n_o(A \cap B)=y\) | \(n_o(A \cap B)=1\) |
5 | \(n_o(B \cap C)\) | ||||
6 | \(n_o(A \cap C)\) | ||||
7 | \(n(A \cap B \cap C)\) | ||||
8 | \(n(A)\) | ||||
9 | \(n(B)\) | ||||
10 | \(n(C)\) | ||||
11 | \(n(A \cap B)\) | ||||
12 | \(n(B \cap C)\) | ||||
13 | \(n(A \cap C)\) | ||||
14 | \(n(A \cup B)\) | ||||
15 | \(n(B \cup C)\) | ||||
16 | \(n(A \cup C)\) | ||||
17 | \(n(A \cup B \cup C)\) | ||||
18 | n(कम्तिमा एक समुहमा पर्ने सदस्य ) | a+b+c+d+e+f+g | p+q+r+s+t | x+y+z | 1+2+3+4 |
19 | n(कम्तिमा दुई समुहमा पर्ने सदस्य ) | ||||
20 | n(कम्तिमा तिन समुहमा पर्ने सदस्य ) | ||||
21 | n(बढिमा एक समुहमा पर्ने सदस्य ) | ||||
22 | n(बढिमाा दुई समुहमा पर्ने सदस्य ) | ||||
23 | n(बढिमा तिन समुहमा पर्ने सदस्य ) | ||||
24 | n(ठिक एक समुहमा पर्ने सदस्य ) | ||||
25 | n(ठिक दुई समुहमा पर्ने सदस्य ) | ||||
26 | n(ठिक तिन समुहमा पर्ने सदस् )य | ||||
27 | \( n[(A \cup B)-C]\) | a+d+b | p+q+r | y+z | 1+2 |
28 | \( n[(B \cup C)-A]\) | ||||
29 | \( n[(A \cup C)-B]\) | ||||
30 | \( n(\overline{A \cup B \cup C})\) |
Based on the Venn-Diagram given below, compute the cardinality of sets as mentioned below.
- \(n(A) \)
- \(n(B) \)
- \(n(C) \)
- \(n(A \cap B) \)
- \(n(A \cap C) \)
- \(n(B \cap C) \)
- n(Exactly one)
- n(Exactly two)
- n(Exactly three)
- n(At least one)
- n(At least two)
No comments:
Post a Comment