Probability Distribution





Probability distribution

Probability distribution is a table or a function that gives a numerical value (probability value) for each outcome of a statistical (random) experiment. With this probability distribution, one can model behavior of a random variable. So, probability distribution is also called function of random variable.


Variable and Random Variable

Show/Hide 👉 Click Here




Types of random variable (Discrete and Continuous)

Show/Hide 👉 Click Here




Probability Distribution

Show/Hide 👉 Click Here



Exercise
  1. Given \(f( x )=cx^2 \) for \(0 \le x \le 3 \), find value of c and \(P( 1 \le x \le 2) \) [1/9,2/27]


    Joint probability distribution

    Show/Hide 👉 Click Here



    Exercise
    1. Given \(f( x,y )=\frac{x^2+y}{32}\) for \( x=0,1,2,3 \) and \( y=0,1\), find \(P(X \ge 2,Y=1)\).
    2. Roll a fair die twice. Let X be the face shown on the first roll, and let Y be the face shown on the second roll, then find the distribution of f(x,y).
    3. Let the random experiment be to roll a fair die twice, let us define the random variables X = the maximum of the two rolls, and Y = the sum of the two rolls, then find the f(x,y).
    4. Given \(f( x,y,z )=\frac{xyz}{108}\) for \(x=1,2,3,y=1,2,3,z=1,2\), find \(P(X=1,Y=1,Z=2)\)



    Joint probability density

    Show/Hide 👉 Click Here



    Exercise
    1. Given \(f( x,y )=kx( x-y )\) for \( 0<x<1,-x<y<x\), find the value of \(k\)
    2. Given \(f( x,y )=k( x+y^2)\) for \( 0 < x < 1, 0 <y < 1\), find value of \(k\)
    3. Given \(f( x,y )=2\) for \(x>0,y>0,x+y<1\). Find probability for followings.
      1. \(P( X\le 2,Y\le 2)\)
      2. \(P( X+Y> 1)\)
      3. \(P(X>2Y)\)
    4. Given \( f( x,y )=2-x-y \) for \( 0 < x <1,0 < y < 1 \). Find \( F(\frac{1}{2},1)\)
    5. Given \(f( x,y,z )=( x+y )e^{-z}\) for \(0<x<1,0<y<1,z>0\). Find the probability \(P[ ( x,y,z )\in A ]\) where \(A=(x,y,z ):0<x<\frac{1}{2},\frac{1}{2}<y<1,z<1\)



    Marginal Probability Distribution

    Show/Hide 👉 Click Here



    Exercise
    1. Given joint pdf \(f( x,y )=\frac{xy}{36}\) for \(x=1,2,3,y=1,2,3\). Find marginal probability function of Y
    2. Given joint pdf \( f( x,y )=\frac{x^2+y}{32}\) for \(x=0,1,2,3 \) and \(y=0,1\), Find marginal probability function of X and Y
    3. Given joint pdf \( f( x,y,z )=\frac{xyz}{108} \) for \(x=1,2,3,y=1,2,3,z=1,2\). Find (a) Marginal probability function of X (b) joint marginal probability function of \( X \) and \( Y\).
    4. Given \(f( x,y )=\frac{6}{5}( x+y^2)\) for \( 0 < x < 1, 0 <y < 1\), Find marginal probability function of X and Y.
    5. Given joint pdf \( f( x,y )=2-x-y\) for \(0 <x <1,0 <y < 1\). Find marginal probability function of X and Y
    6. Given joint pdf \(f( x,y )=\frac{3x( x+y )}{5}\) for \( 0 < x < 1, 0 <y < 2\). Find marginal probability function of X and Y
    7. Given joint pdf \( f( x,y,z )=( x+y )e^{-z}\) for \(0 < x < 1,0 < y< 1,z > 0\). Find (a) joint marginal function of X and Z (b) find marginal density of X alone.
    8. Given joint pdf \( f( x,y )= 8xy\) for \( 0 \le x < y \le 1\). Find marginal probability function of X.
    9. Given joint pdf \(f( x,y )=2\) for \( 0 < x< 1,0 < y < x\). Find marginal probability function of \( X\)
    10. If the joint probability function of two continuous random variables X and Y is \( f( x,y )=2x\) for \(0 < x< 1,0 < y < 1\). Find marginal probability function of X and Y.
    11. Let the random experiment be to roll a fair die twice, let us define the random variables X = the maximum of the two rolls, and Y = the sum of the two rolls, Find marginal probability function of X and Y.



    Conditional Probability Distribution

    Show/Hide 👉 Click Here



    Exercise
    1. Given \(f( x,y )=\frac{xy}{36}\)for \( x=1,2,3,y=1,2,3\). Find the conditional probability function of X given Y=y
    2. Given \( f( x,y )=\frac{x^2+y}{32}\) for \( x=0,1,2,3, y=0,1\). Find conditional probability function of Y given X=1
    3. Given \( f( x,y,z )=\frac{xyz}{108}\) for \( x=1,2,3,y=1,2,3,z=1,2\). Find conditional probability function of X given Y=1.
    4. Given \( f( x,y )=\frac{2(x+2y )}{3}\) for \( 0 < x < 1,0 < y < 1\). Find conditional probability function of X given Y=y
    5. Given \(f( x,y )=\frac{3x( x+y )}{5}\) for \( 0 < x < 1,0 < y < 2\) . Find conditional probability function of Y given X=1.
    6. Given \(f( x,y )=2\) for \( 0 < x < 1,0 < y < x\). Find the conditional probability function of X given Y=y. 



    Moment Generating Function

    Show/Hide 👉 Click Here

No comments:

Post a Comment