Curves in Space





Space Curve

Show/Hide 👉 Click Here




Class of Space Curve

Show/Hide 👉 Click Here




Exercise

  1. Describe the curve
    1. \( \vec{𝐫}=(\sin 𝑡,\cos \cos 8𝑡)\)
    2. \( \vec{𝐫}=( 𝑡 \cos 𝑡,𝑡 \sin 𝑡,𝑡)\)
    3. \( \vec{𝐫}=( 𝑡,𝑡^2,\cos 𝑡 ) \)
    4. \( \vec{𝐫}=( \cos(20𝑡) \sqrt{1−𝑡^2},\sin(20𝑡)\sqrt{1−𝑡^2},𝑡 ) \)
  2. Find a vector function for the curve of intersection of \( 𝑥^2+𝑦^2=9\) and \(𝑦+𝑧=2\)
  3. What is the difference between the parametric curves \(𝑓(𝑡)=⟨𝑡,𝑡,𝑡^2⟩, 𝑔(𝑡)=⟨𝑡^2,𝑡^2,𝑡^4⟩\) , and \(ℎ(𝑡)=⟨\sin (𝑡),\sin (𝑡),\sin 2(𝑡)⟩\) ?
  4. Plot each of the curves below in 2 dimensions, projected onto three rectangular plane (a) \( 𝑓(𝑡)=⟨𝑡,𝑡^3,𝑡^2⟩\) (b) \(𝑓(𝑡)=⟨𝑡^2,𝑡−1,𝑡^2+5⟩\) for 0≤𝑡≤3



No comments:

Post a Comment