Set Operation
In real number system, we can do four fundamental operation to form new number by combining or manipulating one or more existing numbers. For example, given two numbers \(2\) and \(3\) , we can use
- \(+\) to form a new number \(5\) by \(2+3\)
- \(\times\) to form a new number \(6\) by \(2 \times 3\)
- we can do Set operation to form new Set by combining or manipulating one or more existing Sets.
- Set operation helps to combine two or more sets together to form a new set.
- The common example of set operations are: Union, Intersection, Difference, and Complement
Union of Sets
Union of two Sets
Let A and B be any two sets. Then union of sets A and B is a new set consisting all the elements of A and B without repetition. The union is the smallest set containing elements of A and B.
 In other words
  The union of two sets A and B is the set of elements which are in A, in B, or in both A and B
  
  It is denoted by AUB and read as “A union B” or “A cup
    B”.
    
 Mathematically,
  AUB = {x: x ∈ A or x ∈ B}.
मानौ A र B कुनै दुई समुहहरू छन । अब समुह A र B को संयोजन (union) भनेको एउटा नयाँ समुह हो जुन A र B का सबै सदस्यहरु समावेश भई बनेको हुन्छ। संयोजन समुह A र B बाट बन्ने सबैभन्दा सानो समुह हो । यसलाई AUB ले जनाईन्छ र "A संयोजन B" भनेर पढिन्छ।
गणितिय भाषामा,
 AUB = {x: x ∈ A or x ∈ B}.
- 
Example 1If A={ 1,2,3,4,5} and B={4,5,6,7,8}, then find A∪B 
 Solution
 In this example, A={ 1,2,3,4,5} and B={4,5,6,7,8}
 Thus,
 A∪B={Common Elements of A and B} ∪ {Remaining element of A} ∪ {Remaining element of B}
 or A∪B={4,5} ∪{1,2,3}∪{6,7,8}
 or A∪B={1,2,3,4,5,6,7,8}A∪B by shaded region 
- 
Example 2If A={ 1,2,3} and B={6,7,8}, then find A∪B 
 Solution
 In this example, A={ 1,2,3} and B={6,7,8}
 Thus,
 A∪B={Common Elements of A and B} ∪ {Remaining element of A} ∪ {Remaining element of B}
 or A∪B={ }∪{1,2,3}∪{6,7,8}
 or A∪B={1,2,3,6,7,8}the shaded region is A∪B 
- 
Example 3If A={ 1,2,3,4,5} and B={4,5}, then find A∪B 
 Solution
 In this example, A={1,2,3,4,5} and B={4,5}
 Thus,
 A∪B={Common Elements of A and B} ∪ {Remaining element of A} ∪ {Remaining element of B}
 or A∪B={4,5} ∪{1,2,3}∪{}
 or A∪B={1,2,3,4,5}the shaded region is A∪B 
- 
Example 4If B={ 1,2,3,4,5} and A={4,5}, then find A∪B 
 Solution
 In this example, B={1,2,3,4,5} and A={4,5}
 Thus,
 A∪B={Common Elements of A and B} ∪ {Remaining element of A} ∪ {Remaining element of B}
 or A∪B={4,5} ∪{1,2,3}∪{}
 or A∪B={1,2,3,4,5}the shaded region is A∪B 
- 
Example 5If A={1,2,3,4,5} and B={1,2,3,4,5}, then find A∪B 
 Solution
 In this example, A={1,2,3,4,5} and B={1,2,3,4,5}
 Thus,
 A∪B={Common Elements of A and B} ∪ {Remaining element of A} ∪ {Remaining element of B}
 or A∪B={1,2,3,4,5} ∪{}∪{}
 or A∪B={1,2,3,4,5}
Union of Three Sets
Let A, B and C be any three sets. Then union of sets A, B and C is a new set consisting all the elements of A, B and C without repetition. The union is the smallest set containing elements of A, B and C.
 In other words
  The union of three sets A, B and C is the set of elements which are in A, in B, in C or in both A, B and C
  
  It is denoted by AUBUC and read as “A union B union C” or “A cup B cup C”.
    
 Mathematically,
  AUBUC = {x: x ∈ A or x ∈ B or x ∈ C}.
मानौ A, B र C कुनै तिन समुहहरू छन । अब समुह A, B र C को संयोजन (union) भनेको एउटा नयाँ समुह हो जुन A, B र C का सबै सदस्यहरु समावेश भई बनेको हुन्छ। संयोजन समुह A, B र C बाट बन्ने सबैभन्दा सानो समुह हो । यसलाई AUBUC ले जनाईन्छ र "A संयोजन B संयोजन C " भनेर पढिन्छ।
गणितिय भाषामा,
 AUBUC = {x: x ∈ A or x ∈ B or x ∈ C}.
  
  समूहको संयोजन गर्दा दिइएका समूहका साझा सदस्यहरूलाई नदोहो-याइकन बाँकी सबै सदस्यहरूलाई लिएर समूहको रूपमा लेख्नुपर्छ ।
Example 1
If U={a, b, c, d, e,f,g,h,i,o,u}, A = {a, b, c, d, e}, B = {a, e, i, o, u}, C = {d, e, f, g} are given then find \(A \cup B \cup C\) and present it in Venn-Diagram.
Given that
  U={a, b, c, d, e,f,g,h,i,o,u}
  A = {a, b, c, d, e}
      B = {a, e, i, o, u}
          C = {d, e, f, g} 
 The union of A,B and C is given by
    
  AUBUC = {x: x ∈ A or x ∈ B or x ∈ C}.
 
 or AUBUC = {a, b, c, d, e,f,g,i,o,u}
 
  सँगैको भेनचित्रमा छाया पारेको भागले AUBUC लाई जनाउँछ ।
 
Intersection of Sets
Let A and B be any two sets. Then intersection of sets A and B is a new set consisting common elements of A and B. The intersection is the largest set containing common elements of A and B.
 It is denoted by A∩B and read as “A intersection B” or “A cap B”.
    
 Mathematically, A∩B = {x: x ∈ A and x ∈ B}.
मानौ A र B कुनै दुई समुहहरू छन । अब समुह A र B को प्रतिच्छेदन (intersection) भनेको एउटा नयाँ समुह हो जुन A र B का सबै साझा सदस्यहरु समावेश भई बनेको हुन्छ। प्रतिच्छेदन समुह A र B को साझा सदस्यबाट बन्ने सबैभन्दा ठुलो समुह हो । यसलाई A∩B ले जनाईन्छ र "A प्रतिच्छेदन B" भनेर पढिन्छ।
गणितिय भाषामा, A∩B = {x: x ∈A and x ∈ B}.
- 
Example 1If A={ 1,2,3,4,5} and B={4,5,6,7,8}, then find A∩B the shaded region is A∩B
 Solution
 In this example, A={ 1,2,3,4,5} and B={4,5,6,7,8}
 Thus,
 A∩B ={Common Elements of A and B}
 or A∩B ={4,5}
 or A∩B ={4,5}
- 
Example 2If A={ 1,2,3} and B={6,7,8}, then find A∩B the shaded region is A∩B , Empty Set
 Solution
 In this example, A={ 1,2,3} and B={6,7,8}
 Thus,
 A∩B ={Common Elements of A and B}
 or A∩B ={ }
 or A∩B ={ }
- 
Example 3If A={ 1,2,3,4,5} and B={4,5}, then find A∩B the shaded region is A∩B
 Solution
 In this example, A={1,2,3,4,5} and B={4,5}
 Thus,
 A∩B ={Common Elements of A and B}
 or A∩B ={4,5}
 or A∩B ={4,5}
- 
Example 4If B={ 1,2,3,4,5} and A={4,5}, then find A∩B the shaded region is A∩B
 Solution
 In this example, B={1,2,3,4,5} and A={4,5}
 Thus,
 A∩B ={Common Elements of A and B}
 or A∩B ={4,5}
 or A∩B ={4,5}
- 
Example 5If A={1,2,3,4,5} and B={1,2,3,4,5}, then find A∩B the shaded region is A∩B
 Solution
 In this example, A={1,2,3,4,5} and B={1,2,3,4,5}
 Thus,
 A∩B ={Common Elements of A and B}
 or A∩B ={1,2,3,4,5}
 or A∩B ={1,2,3,4,5}
Intersection of Three Sets
Let A, B and C be any three sets. Then intersection of sets A, B and C is a new set consisting all the COMMON elements of A, B and C without repetition. The union is the largest set containing the COMMON elements of A, B and C.
 In other words
  The intersection of three sets A, B and C is the set of elements which are in A, and in B, and in C
  
  It is denoted by A∩B∩C and read as “A intersection B intersection C” or “A cap B cap C”.
    
 Mathematically,
  A∩B∩C = {x: x ∈ A and x ∈ B and x ∈ C}.
मानौ A, B र C कुनै तिन समुहहरू छन । अब समुह A, B र C को प्रतिच्छेदन (intersection) भनेको एउटा नयाँ समुह हो जुन A, B र C का सबै साझा सदस्यहरु समावेश भई बनेको हुन्छ। प्रतिच्छेदन समुह A, B र C को साझा सदस्यबाट बन्ने सबैभन्दा ठुलो समुह हो । यसलाई A∩B∩C ले जनाईन्छ र "A प्रतिच्छेदन B प्रतिच्छेदन C " भनेर पढिन्छ।
गणितिय भाषामा,
 A∩B∩C = {x: x ∈ A and x ∈ B and x ∈ C}.
  
  समूहको प्रतिच्छेदन गर्दा दिइएका सबै समूहका साझा सदस्यहरूलाई मात्र नदोहो-याइकन समूहको रूपमा लेख्नुपर्छ ।
Example 1
If U={a, b, c, d, e,f,g,h,i,o,u}, A = {a, b, c, d, e}, B = {a, e, i, o, u}, C = {d, e, f, g} are given then find \(A \cap B \cap C\) and present it in Venn-Diagram.
Given that
  U={a, b, c, d, e,f,g,h,i,o,u}
  A = {a, b, c, d, e}
      B = {a, e, i, o, u}
          C = {d, e, f, g} 
 The union of A,B and C is given by
    
  A∩B∩C = {x: x ∈ A and x ∈ B and x ∈ C}.
 
  or A∩B∩C =  {a, b, c, d, e}∩{a, e, i, o, u}∩{d, e, f, g}
 
 or A∩B∩C = {e}
 
  सँगैको भेनचित्रमा घेरा पारेको भागले A∩B∩C लाई जनाउँछ ।
 
Difference of Sets
Let A and B be any two sets. Then difference of sets A and B is a new set consisting elements of only A which are NOT in B. 
 It is denoted by A-B and read as “A difference B” or “A - B”.
    
 Mathematically, A-B = {x: x ∈ A and x ∉ B}.
मानौ A र B कुनै दुई समुहहरू छन । अब समुह A र B को फरक (difference) भनेको एउटा नयाँ समुह हो जुन A मा मात्र भएको तर B मा नभएको सबै सदस्यहरु समावेश भई बनेको हुन्छ। यसलाई A-B ले जनाईन्छ र "A फरक B" भनेर पढिन्छ।
गणितिय भाषामा, A-B = {x: x ∈A and x ∉ B}.
  The union of A-B and B-A is called symmetric difference of A and B, and it is denoted by \(A \triangle B\) or \(A \ominus B\), and read as " A symmetric difference B".
  
  
  
- 
Example 1If A={ 1,2,3,4,5} and B={4,5,6,7,8}, then find A-B 
 Solution
 In this example, A={ 1,2,3,4,5} and B={4,5,6,7,8}
 Thus,
 A-B =Elements in Abut NOT in B
 or A-B ={1,2,3}
 or A-B ={1,2,3}
- 
Example 2If A={ 1,2,3} and B={6,7,8}, then find A-B 
 Solution
 In this example, A={ 1,2,3} and B={6,7,8}
 Thus,
 A-B =Elements in Abut NOT in B
 or A-B ={1,2,3}
 or A-B ={1,2,3}
- 
Example 3If A={1,2,3,4,5} and B={4,5}, then find A-B 
 Solution
 In this example, A={1,2,3,4,5} and B={4,5}
 Thus,
 A-B =Elements in Abut NOT in B
 or A-B ={1,2,3}
 or A-B ={1,2,3}
- 
Example 4If B={1,2,3,4,5} and A={4,5}, then find A-B 
 Solution
 In this example, B={1,2,3,4,5} and A={4,5}
 Thus,
 A-B =Elements in Abut NOT in B
 or A-B ={}
 or A-B ={}
- 
Example 5If A={1,2,3,4,5} and B={1,2,3,4,5}, then find A-B 
 Solution
 In this example, A={1,2,3,4,5} and B={1,2,3,4,5}
 Thus,
 A-B =Elements in Abut NOT in B
 or A-B ={}
 or A-B ={}
Complement of Set
    Let A and B be any two sets. Then Complement of sets A is a new set consisting elements which are NOT in A. 
 It is denoted by A' or \(\overline{A}\) and read as “A Complement” or “U - A”.
    
 Mathematically, A' = {x: x ∈ U and x ∉ A}.
मानौ A कुनै एउटा समुह हो । अब समुह A को पुरक (Complement) भनेको एउटा नयाँ समुह हो जुन A मा नभएको सबै सदस्यहरु समावेश भई बनेको हुन्छ। यसलाई A' or \(\overline{A}\) ले जनाईन्छ र "U-A" भनेर पढिन्छ।
गणितिय भाषामा, A' = {x: x ∈ U and x ∉ A}.
- 
Example 1If U={ 1,2,3,4,5,6,7,8,9,10} with A={1,2,3,4,5}, B={4,5,6,7,8} , then find A' 
 Solution
 In this example,
 A'= U-A={6,7,8,9,10}
- 
Example 1If U={ 1,2,3,4,5} and A={4,5} , then find A' 
 Solution
 In this example,
 U={ 1,2,3,4,5} and A={4,5}
 Therefore, A'= U-A={1,2,3}
 
No comments:
Post a Comment