Integration by Substitution


Integration by Substitution/Replacement
The integration by substitution rule applies if the integrand consists two parts (functions) in which one function is derivative of other (in some form). The two general structure of this form is
\( \int f(x)^n.f(x)' dx\) or \( \int \frac{f(x)' dx}{f(x)^n} \)
That is, if a one part is the derivative of another via the chain rule, we let u to denote a likely candidate for the inner part as f(x), then translate the given function so that it is written entirely in terms of u, with no x remaining in the expression.
If we can integrate this new function of u, then the anti-derivative of the original function is obtained by replacing u by the equivalent expression in x.
It can be further classified into three sub categories
  1. General substitution
  2. Powers of sine and cosine
  3. Trigonometric Substitutions



  1. \( \int \frac{dx}{\text{Quadratic}} \)
  2. \( \int \frac{\text{linear}}{\text{Quadratic}} dx \)
  3. \( \int \frac{dx} {\sqrt{\text{Quadratic}}} dx \)
  4. \( \int \frac{\text{linear} }{\sqrt{\text{Quadratic}}} dx \)
  1. \( \int \frac{dx}{x^2-a^2} dx =\frac{1}{2a} \log \left | \frac{x-a}{x+a}\right |+c \)
  2. \( \int \frac{dx}{a^2-x^2} dx =\frac{1}{2a} \log \left | \frac{a+x}{a-x}\right |+c \)
  3. \( \int \frac{dx}{x^2+a^2} dx =\frac{1}{a} \tan^{-1} \left ( \frac{x}{a}\right )+c \)
  4. \( \int \frac{dx}{\sqrt{a^2-x^2}} dx =\sin^{-1} \left ( \frac{x}{a}\right )+c \)
  5. \( \int \frac{dx}{\sqrt{x^2-a^2}} dx =\log \left | x+ \sqrt{x^2-a^2} \right |+c \)
  6. \( \int \frac{dx}{\sqrt{x^2+a^2}} dx =\log \left | x+ \sqrt{x^2+a^2} \right |+c \)
  7. \( \int \frac{dx}{x\sqrt{x^2-a^2}} dx =\frac{1}{a} \sec^{-1} \left ( \frac{x}{a}\right )+c \)



Solved Examples: General substitution

Evaluate Following Integrals
  1. \( \int (x^2-5)^7 2x dx\)

    Solution 👉 Click Here

  2. \(\int 2x (\cos x^2) \)dx

    Solution 👉 Click Here

  3. \(\int (ax+b)^ndx\), assuming that a and b are constants, \( a\ne 0\), and n is a positive integer.

    Solution 👉 Click Here

  4. \( \int \sin(ax+b)dx\), assuming that a and b are constants and \(a\ne 0\).

    Solution 👉 Click Here




Evaluate the following Intrgral

SN Question Answer
1 \( \int \sin^2 x dx\) \( \frac{x}{2}-\frac{\sin(2x)}{4}+c\)
2 \( \int \sin^3 x dx\) \( -\cos x+\frac{\cos^3 x}{3}+c\)
3 \( \int \sin^4 x dx\) \(\frac{3x}{8}-\frac{\sin(2x)}{4}+\frac{\sin(4x)}{32}+c\)
4 \( \int \cos^2 x \sin^3 x dx\) \(\frac{\cos^5 x}{5}-\frac{\cos^3 x}{3}+c\)
5 \( \int \cos^3 x dx\) \(-\sin x-\frac{\sin^3 x}{3}+c\)
6 \( \int \cos^3 x \sin^2 xdx\) \(\frac{\sin^3 x}{3}-\frac{\sin^5 x}{5}+c\)



Solved Examples: Powers of sine and cosine

Evaluate the following integrals
  1. \( \int \sin^5xdx\).

    Solution 👉 Click Here

  2. \( \int \sin^2x \cos^2x dx\).

    Solution 👉 Click Here

  3. \( \int \frac{\tan ^4 \sqrt{x} \sec ^2 \sqrt{x}}{\sqrt{x} } dx \)

    Solution 👉 Click Here

  4. \( \int \csc^6 dx \)

    Solution 👉 Click Here

  5. \( \int \frac{\sin(x+a)}{\sin(x-a)} dx \)

    Solution 👉 Click Here

Trigonometric Substitutions

This type of substitution is usually indicated when the function of integrate contains a polynomial expression to use the fundamental trigonometric identity as
\(\cos^2x+\sin^2x =1\) or \(\cos^2 x=1-\sin^2 x \)
\(\sec^2x-\tan^2x=1 \) or \( \sec^2x=1+\tan^2x \)
\(\sec^2x-\tan^2x=1 \) or \( \tan^2x=\sec^2x-1\)

Therefore
  1. if it contains \( 1-x^2\), we substitute \(x=\sin u\)
  2. if it contains \(1+x^2\) we substitute \(x=\tan u\) and
  3. if it contains \(x^2-1\), we substitute \(x=\sec u\).

Sometimes, we need something a bit different to handle constants other than one. Thus, key points are as follows

  1. Put \( x=a\sin u \) for integration involving \( a^2-x^2\)
  2. Put \( x=a\tan u \) for integration involving \( a^2+x^2\)
  3. Put \( x=a\sec u \) for integration involving \( x^2-a^2 \)

Solved Examples: Trigonometric Substitutions

Evaluate following integrals
  1. \( \int \sqrt{1-x^2} dx\)

    Solution 👉 Click Here

  2. \( \int \sqrt{4-9x^2} dx \)

    Solution 👉 Click Here

  3. \( \int \frac{x^2}{\sqrt{4-x^2}} dx\)

    Solution 👉 Click Here

  4. \( \int \frac{\sqrt{x}}{\sqrt{a^3-x^3}} dx \)

    Solution 👉 Click Here




Evaluate the following Intrgral

SN Question Answer
1 \( \int{\frac{1}{\sqrt{x^2-a^2}}}dx\) \( \int{\frac{x}{\sqrt{9+x^2}}}dx\)
2 \( \int \sqrt{x^2-1} dx\) \( \frac{x\sqrt{x^2-1}}{2}-\frac{ln |x+\sqrt{x^2-1}|}{2}+c\)
3 \( \int \sqrt{9+4x^2} dx\) \( \frac{x\sqrt{9+4x^2}}{2}+ \frac{9}{4} \ln |2x+\sqrt{9+4x^2}|+c\)
4 \( \int x \sqrt{1-x^2} dx\) \( -\frac{(1-x^2)^{2/3}}{3}+ c\)
5 \( \int x^2 \sqrt{1-x^2} dx\) \( \frac{\sin^{-1}}{8}-\frac{sin(4 \sin^1{-1}x)}{32}+ c\)
6 \(\int \frac{1}{\sqrt{1+x^2}} dx\) \(\ln |x+\sqrt{1+x^2}| + c \)
7 \(\int \frac{x^2}{\sqrt{4-x^2}} dx\) \(2 \sin^{-1} (x/2) -\frac{x\sqrt{4-x^2}}{2} + c\)
8 \(\int \frac{x^3}{\sqrt{4x^2-1}} dx\) \(\frac{(2x^2+1) \sqrt{4x^2-1}}{24}+ c\)

No comments:

Post a Comment