Continuity of a function


Introduction

Many functions have the property that their graphs can be traced with a pencil without lifting the pencil from the page. Such functions are called continuous.

Intuitively, a function is continuous at a particular point if there is no break in its graph at that point.
let’s consider some examples that fail to meet our intuitive notion of what it means to be continuous at a point.

\( f(x)=\frac{x^2-1}{x-1}\)\( \small {f(x)= \begin{cases} x+1 & \text{for } x ≤ 2 \\ x+2 & \text{for } x > 2 \end{cases}} \)\( \small { f(x)= \begin{cases} x+1 & \text{for } x \ne 2 \\ 4 & \text{for } x = 2 \end{cases}} \)
  1. In Figure (1). We see that the graph of f(x) has a hole at a. In fact, f(a) is undefined. So f(x) is NOT contnuous
  2. In Figure (2), f(a) is defined, but the function has a jump at a. So f(x) is NOT contnuous.
  3. In Figure (3), f(a) is defined, but the function has a gap at a. So f(x) is NOT contnuous.



Definition

A function f(x) is defined to be continuous at a if the following three conditions holds

  1. f(a) is defined
  2. \( \displaystyle \lim_{x\to a^{-}}f(x)\) exist = LHL
  3. \( \displaystyle \lim_{x\to a^{+}}f(x) \) exist = RHL
  4. LHL = RHL = f(a)
Examples
  1. A function \( f(x) = x^2 + 1 \) is continuous at 2, since
    \( \displaystyle \lim_{x \rightarrow 2} f(x) =5 =f(2)\)

  2. A function \( f(x) = \sqrt{4-x^2} \) is NOT continuous at 3
    since f(3) is not defined.
  3. A function \( f(x)=\frac{1}{x-2}\)
    is not continuous at 2 because f(2) is not defined.

NOTES
  1. The constant function, f (x) = c, \( \forall x \in R\) is continuous on R.
  2. The identity function, f (x) = x, \( \forall x \in R\) is continuous on R.
  3. The function f (x) = x n, \( x \in N\) is continuous on R.
  4. The function f (x) = sinx is continuous.



Example 1

Test the continuity of a function \( f(x)= \begin{cases} -x^2 &\text { for } x \ne 2 \\ 0 &\text {for } x=2 \end{cases} \) at x=2.

Solution

The solution is as follows
At \( x=2^{-}\), the left hand limit is
\( \displaystyle \lim_{x \to 2^{-}} f(x)= \lim_{x \to 2^{-} } -x^2 =-4\) LHL
At \( x=2^{+}\), the right hand limit is
\( \displaystyle \lim_{x \to 2^{+}} f(x)= \lim_{x \to 2^{+}} = -x^2 =-4\) RHL
At x=2, the value of the function is
f(2) = 0 Functional Value
Since, limiting value and functional value are not equal, f(x) is not continuous at x=2.

Example 2

Test the continuity of a function \( f(x)= \begin{cases} -x^2 +2 &\text { for } x \ne 2 \\ 1 &\text { for } x=2 \end{cases} \) at x=2.

Solution

The solution is as follows
At \( x=2^{-}\), the left hand limit is
\( \displaystyle \lim_{x \to 2^{-}} f(x)= \lim_{x \to 2^{-} } -x^2+2 =-2\) LHL
At \( x=2^{+}\), the right hand limit is
\( \displaystyle \lim_{x \to 2^{+}} f(x)= \lim_{x \to 2^{+}} = -x^2+2 =-2\) RHL
At x=2, the value of the function is
f(2) = 1 Functional Value
Since, limiting value and functional value are not equal, f(x) is not continuous at x=2.

Example 3

Test the continuity of a function \(f(x)=\frac{|x|}{x}\) for \(x\ne 0\) at x=0.

Solution

The solution is
At x = 0, the value of f(0) is not defined.
Also, the left hand limit is -1, whereas the right hand limit is 1
So, the function is not continuous at x=0.

Example 4

Is\( f(x)=\frac{x+4}{x-3}\) continuous at x =1? At x =3?

Solution

The solution is as follows
At x=1, the limit value is
\( \displaystyle \lim_{x \to 1} f(x)= \lim_{x \to 1}\frac{x+4}{x-3}=\lim_{x \to 1} \frac{1+4}{1-3} =\frac{5}{-2}\) This is Limit Value
At x=1, the value of the function is
\( \displaystyle \lim_{x \to 1} f(x)= \lim_{x \to 1} \frac{1+4}{1-3} =\frac{5}{-2}\) This is Functional Value
Since, limiting value and functional value are equal, f(x) is continuous at x=1.
Next,
At x=3, the limit value is
\( \displaystyle \lim_{x \to 3} f(x)= \lim_{x \to 3} \frac{x+4}{x-3} =\frac{7}{0}\)=undefined
Since, the limiting value is undefined, f(x) is NOT continuous at x=3.




Exercise: BCB-Revised Edition 2020, Exercise 15.3, Page 389

  1. Test the continuity of discontinuity of the following function by calculating the left hand limits, the right-hand limits and the values of the functions at points specified.
    1. \( f(x)=x^2\) at x=4

      Solution 👉 Click Here

    2. \( f(x)=2-3x^2\) at x=0

      Solution 👉 Click Here

    3. \( f(x)=3x^2-2x+4\) at x=1

      Solution 👉 Click Here

    4. \( f(x)=\frac{1}{2x}\) at x=0

      Solution 👉 Click Here

    5. \( f(x)=\frac{1}{x-2}\) at x≠2

      Solution 👉 Click Here

    6. \( f(x)=\frac{1}{3x}\) at x≠0

      Solution 👉 Click Here

    7. \( f(x)=\frac{1}{1-x}\) at x=1

      Solution 👉 Click Here

    8. \( f(x)=\frac{1}{x-3}\) at x=3

      Solution 👉 Click Here

    9. \( f(x)=\frac{x^2-9}{x-3}\) at x=3

      Solution 👉 Click Here

    10. \( f(x)=\frac{x^2-16}{x-4}\) at x=4

      Solution 👉 Click Here

    11. \( f(x)=\frac{|x-2|}{x-2}\) at x=2

      Solution 👉 Click Here

    12. \( f(x)=\frac{x}{|x|}\) at x=0

      Solution 👉 Click Here

  2. Discuss the continuity of functions at the points specified
    1. \( f(x)= \begin{cases} 2-x^2 & \text{for } x \le 2 \\ 1 & \text{for } x > 2 \end{cases} \) at x=2

      Solution 👉 Click Here

    2. \( f(x)= \begin{cases} 2x^2+4 & \text{for } x \le 2 \\ 4x+1 & \text{for } x > 2 \end{cases} \) at x=2

      Solution 👉 Click Here

    3. \( f(x)= \begin{cases} 2x & \text{for } x \le 3 \\ 3x-3 & \text{for } x > 3 \end{cases} \) at x=3

      Solution 👉 Click Here

    4. \( f(x)= \begin{cases} 2x+1 & \text{for } x < 1 \\ 2 & \text{for } x =1 \\ 3x & \text{for } x >1 \end{cases} \) at x=1

      Solution 👉 Click Here


    1. A function is defined as follows
      \( f(x)= \begin{cases} x^2+2 & \text{for } x < 5 \\ 20 & \text{for } x =5 \\ 3x+12 & \text{for } x > 5 \end{cases} \).
      Show that f(x) has removable discontinuity at x=5

      Solution 👉 Click Here

    2. A function is defined as follows
      \( f(x)= \begin{cases} 2x-3 & \text{for } x < 2 \\ 2 & \text{for } x =2 \\ 3x-5 & \text{for } x > 2 \end{cases} \).
      Is the function f(x) continuous at x=2? If not, how can the function f(x) be made continuous at x=2?

      Solution 👉 Click Here


    1. A function is defined as follows
      \( f(x)= \begin{cases} kx+3 & \text{for } x \ge 2 \\ 3x-1 & \text{for } x < 2 \end{cases} \).
      Find the value of k so that f(x) is continuous at x=2

      Solution 👉 Click Here

    2. A function is defined as follows
      \( f(x)= \begin{cases} \frac{2x^2-18}{x-3} & \text{for } x \ne 3 \\ k & \text{for } x =3 \end{cases} \).
      Find the value of k so that f(x) is continuous at x=3

      Solution 👉 Click Here




Additional Questions [BCB, page 394]

  1. Define the continuity of a function at a point. Give with reason, an example of a continuouss function at a point. Is the function \(f(x)=\frac{1}{1-x}\) continuous at the point x=1?

    Solution 👉 Click Here

  2. When a function f(x) is said to be continuous at a point x=a? Discuss the continuity of \(f(x)=\begin{cases} x^2+2 & \text {for } x \le 5 \\ 3x+12 & \text{for } x > 5 \end{cases}\) at x=5

    Solution 👉 Click Here

  3. At what point is the function \(f(x)=\frac{x+1}{(x-2)(x-3)}\) (i) discontinuous (ii) continuous ?

    Solution 👉 Click Here

  4. Doiscuss the continuity of the function f(x) at the point x=0.
    \(f(x)=\begin{cases} x & \text {for } x > 0 \\ 1 & \text{for } x=0 \\ -x & \text{for } x < 0 \end{cases}\)

    Solution 👉 Click Here

  5. A function f(x) is defind as follows. \(f(x)=\begin{cases} 2x+1 & \text {for } x < 1 \\ 2 & \text{for } x=1 \\ 3x & \text{for } x > 0 \end{cases}\)
    Calculate the left hand limit and right hand limit of f(x) at x=1. Is the function continuous at x=1?

    Solution 👉 Click Here

  6. What do you understand by the limit of a function? Let a function f(x) is defined by
    \(f(x)=\begin{cases} 2-x^2 & \text {for } x < 2 \\ 3 & \text{for } x=2 \\ x-4 & \text{for } x > 2 \end{cases}\)
    Verify that the limit of the function f(x) exists at x=2. Is the function f(x) continuous at x=2? If not why? State how can you make it continuous.

    Solution 👉 Click Here

  7. A function f(x) is defined as under \(f(x)=\begin{cases} \frac{x^2-x-6}{x^2-2x-3} & \text {for } x \ne 3 \\ \frac{5}{3} & \text{for } x =3 \end{cases}\)
    Prove that f(x) is discontinuous at x=3. Can the definition of f(x) for x=3 be modified so as to make it continuous there?

    Solution 👉 Click Here


    1. A function f(x) is defined as follows
      \(f(x)=\begin{cases} \frac{1}{2}+x & \text {for } 0 < x <\frac{1}{2} \\ \frac{1}{2} & \text{for } x =\frac{1}{2} \\ \frac{3}{2}-x & \text{for } \frac{1}{2} < x < 1 \end{cases}\)
      Show that f(x) has removable discontinuity at \(x=\frac{1}{2}\)

      Solution 👉 Click Here

    2. A function f(x) is defined in (0,3) as follows
      \(f(x)=\begin{cases} x^2 & \text {for } 0 < x <1 \\ x & \text{for } 1 \le x < 2 \\ \frac{1}{4}x^3 & \text{for } 2 \le x < 3 \end{cases}\)
      Show that f(x) is continuous at x=1 and x=2

      Solution 👉 Click Here

    3. A function f(x) is defined as follows
      \(f(x)=\begin{cases} 3+2x & \text {for } -\frac{3}{2} \le x <0 \\ 3-2x & \text{for } 0 \le x < \frac{3}{2} \\ -3-2x & \text{for } x \ge \frac{3}{2} \end{cases}\)
      Show that f(x) is continuous at x=0 and discontinuous at \(x=\frac{3}{2}\)

      Solution 👉 Click Here

    4. A function f(x) is defined as follows
      \(f(x)=\begin{cases} 1 & \text {for } x >0 \\ 0 & \text{for } x=0 \\ -1 & \text{for } x < 01\end{cases}\)
      Show that f(x) isdiscontinuous at x=0.

      Solution 👉 Click Here

  8. In the following, determine the value of the constant so that the given function is continuous at the point mentioned.
    1. \(f(x)=\begin{cases} kx^2 & \text {for } x \le 2 \\ 3 & \text{for } x > 2\end{cases}\) at x=2

      Solution 👉 Click Here

    2. \(f(x)=\begin{cases}ax+5 & \text {for } x \le 2 \\ x-1 & \text{for } x > 2\end{cases}\) at x=2

      Solution 👉 Click Here

    3. \(f(x)=\begin{cases} 2px+3 & \text {for } x <1 \\ 1-px^2& \text{for } x \ge 1\end{cases}\) at x=1

      Solution 👉 Click Here

    4. \(f(x)=\begin{cases} \frac{x^2-9}{x-3} & \text {for } x \ne 3 \\ k & \text{for } x =3 \end{cases}\) at x=3

      Solution 👉 Click Here

  9. Let \(f(x)=\begin{cases} 2x & \text {for } x <2 \\ 2 & \text{for } x=2 \\ x^2 & \text{for } x >2 \end{cases}\). Show that f(x) has removable discontinuity at x=2.

    Solution 👉 Click Here

  10. What condition is necessary for a function f(x) to be continuous at the point x=a? In what condition will f(x) be discontinuous at x=a?

    Solution 👉 Click Here

  11. A function f(x) is defined as \(f(x)=\begin{cases} 1 & \text {for } x \ne 0 \\ 2 & \text{for } x =0 \end{cases}\). Find \(\displaystyle \lim_{x \to 0} f(x)\) if exists. Is the function continuous at x=0?

    Solution 👉 Click Here

  12. Find the point of discontinuous of the following functions
    1. \(f(x)=\frac{x+1}{x-1}\)

      Solution 👉 Click Here

    2. \(f(x)=\frac{3x-1}{x^3-5x^2+6x}\)

      Solution 👉 Click Here




    1. Contunuity of a function [Extra Exercise]

      1. Test the continuity of a function f(x)=x2+1 at x=0

        Solution 👉 Click Here

      2. Test the continuity of a function \( f(x)= \begin{cases} \frac{|x|}{x} & x \ne 2\\ x & x =2 \end{cases} \) at x=2.

        Solution 👉 Click Here

      3. Test the continuity of a function \( f(x)= \begin{cases} 4x-3 & x < 2\\ (x-3)^2 & x ≥ 2 \end{cases} \) at x=2.

        Solution 👉 Click Here

      4. Test the continuity of a function \( f(x)= \begin{cases} \frac{x^2-4}{x-2} & x \ne 2\\ 4 & x =2 \end{cases} \) at x=2.

        Solution 👉 Click Here

      5. Test the continuity of a function \(f(x)=\begin{cases} \frac{1}{x} & x < -1 \\ \frac{x-1}{2} & -1 \le x < 1 \\ \sqrt{x} & x \ge 1 \\ \end{cases} \) at x=-1.

        Solution 👉 Click Here

      6. Test the continuity of a function \( f(x)=\begin{cases} x-2 & x < 1 \\ \sqrt{x} & x \ge 1 \\ \end{cases} \) at x=-1 and at x=1.

        Solution 👉 Click Here

      7. For what value of k would make the function continuous in each case? Explain how you found your value.
        • \( f(x)= \begin{cases} \frac{x^2-9}{x+3} & x\ne -3 \\ k & x=-3 \end{cases} \) at x=-3

          Solution 👉 Click Here

        • \( f(x)= \begin{cases} \frac{\sin (5\pi x)-1}{2x-1} & x\ne \frac{1}{2} \\ k & x= \frac{1}{2} \end{cases} \) at \( x=\frac{1}{2}\)

          Solution 👉 Click Here

        • \( f(x)= \begin{cases} \frac{e^x-1}{x} & x\ne 0 \\ k & x=0 \end{cases} \) at x=0

          Solution 👉 Click Here

      8. Evaluate \( \displaystyle \lim_{x \to 4} \frac{(x-3)}{(4-x)(x+3)}\)
        Solution

        Solution 👉 Click Here

No comments:

Post a Comment